Home / vulnerabilities actionscript-overflow.txt
Posted on 05 August 2009
Source : packetstormsecurity.org Link
Background:
==========
ActionScript code is compiled into ActionScript Byte Code segments,
loaded by AVM2 (ActionScript Virtual Machine 2).
These segments are described by the abcFile structure:
abcFile
{
u16 minor_version
u16 major_version
cpool_info constant_pool
u30 method_count
method_info method[method_count]
u30 metadata_count
metadata_info metadata[metadata_count]
u30 class_count
instance_info instance[class_count]
class_info class[class_count]
u30 script_count
script_info script[script_count]
u30 method_body_count
method_body_info method_body[method_body_count]
}
The value of class_count element is the number of entries in the
instance and class arrays.
Each instance entry is a variable length instance_info structure which
specifies the
characteristics of object instances created by a particular class:
instance_info
{
u30 name
u30 super_name
u8 flags
u30 protectedNs
u30 intrf_count
u30 interface[intrf_count]
u30 iinit
u30 trait_count
traits_info trait[trait_count]
}
The value of the intrf_count field is the number of entries in the
interface array.
The interface array contains indices into the multiname array of the
constant pool;
the referenced names specify the interfaces implemented by this class.
Vulnerability:
=============
An integer overflow exists in the AVM2 abcFile parser code which handles the
intrf_count value of the instance_info structure.
When intrf_count is larger than 0x10000000, it is nullified due to an
integer overflow.
This results in an out of bounds pointer dereference. The out of
bounds object contains
arbitrary values (in the context of the code which handles the
interfaces count element)
which are manipulated in a way so that an arbitrary memory overwrite
with an attacker
supplied destination and value is possible.
The following is a detailed run trace which explains the
vulnerability. Irrelevant
instructions are omitted. Flash10b.ocx is assumed to be loaded at VA 10000000h.
let <intrf_count> be 0x10000000
.text:10206B03 mov edi, [esp+50h+var_2C] ; EDI=<intrf_count>=0x10000000
.text:10206B14 lea edx, [edi+edi] ;
EDX=<intrf_count*2>=0x20000000, may not overflow (verified elsewhere)
.text:10206B1B call sub_101EAC30
.text:101EAC45 call sub_101EAB90
.text:101EAB98 call sub_101D1FF0 ; this method calculates
the nearest power of 2 for <intrf_count*2> (i.e: stays 0x20000000)
.text:101EABA0 add eax, eax ; doubles that value (i.e:
EAX=0x40000000)
.text:101EABCC lea ecx, ds:0[eax*4] ; multiplies it by 4 (i.e:
ECX=0x00000000) =>OVERFLOW<=
.text:101EABDA call sub_10224C62
.text:10224C62 jmp sub_10224363
.text:10224363 mov edx, [esp+arg_0] ; arg_0 is the overflown
value (i.e: EDX=00000000)
.text:10224367 lea eax, [edx+7]
.text:10224376 and eax, 0FFFFFFF8h ; EAX=00000000
.text:1022437A mov esi, eax ; ESI=00000000
.text:102243A4 mov ecx, esi ; ECX=00000000
.text:102243A9 mov eax, [eax+ecx*4-4]
; the overflown value is used as an index into pointer table, starting at EAX.
; since we can cause ECX to become 0x0000000, we may select an out of bounds
; pointer (eax-4). Tests show that it always contains a valid pointer to some
; object, with arbitrary values. i.e: EAX=&OutOfBoundsObject
.text:102243AD mov ecx, eax ; ECX=&OutOfBoundsObject
.text:102243C8 call sub_10226D4D
.text:10226D53 mov ebx, ecx ; EBX=&OutOfBoundsObject
.text:10226D6C mov esi, [ebx+8] ; ESI=&ArbitraryObjectA
(usually: 0x55555555)
.text:10226D76 test byte ptr [esi+2Ah], 1 ; <PathConditionA >-
must pass this in order to continue
.text:10226D7A jz short loc_10226DA5
.text:10226D7C mov eax, [ebx+38h] ;
EAX=&ArbitraryObjectB, (usually 0x55555557)
.text:10226D7F cmp byte ptr [eax+33Ch], 0 ; <PathConditionB> -
must pass this in order to continue
.text:10226D86 mov ecx, ebx ; ECX=&OutOfBoundsObject
.text:10226D88 jnz short loc_10226D9D
.text:10226D8A push esi
.text:10226D8B call sub_10226CAF
.text:10226CB0 mov esi, [esp+4+arg_0] ;
ESI=&ArbitraryObjectA, (usually 0x55555555)
.text:10226CB5 push esi
.text:10226CB6 mov edi, ecx ; EDI=&OutOfBoundsObject
.text:10226CB8 call sub_102266CA
.text:102266CA mov eax, [esp+arg_0] ;
EAX=ESI=&ArbitraryObjectA (usually 0x55555555)
.text:102266DB mov ecx, [eax+1Ch] ; ECX=arbitrary value
- usually *(0x55555571)
.text:102266CE mov edx, [eax+20h] ; EDX=arbitrary value
- usually *(0x55555575)
.text:102266DE mov [ecx+20h], edx; ; JACKPOT - a write of
an arbitrary DWORD to an arbitrary VA
The following is an illustration of the pointer table and the out of
bounds pointer
which may be dereferenced:
addr val
0017487C 00E82000 <- EAX-4 (ECX=0)
00174880 001681C8 <- EAX (ECX=1)
00174884 00174AC8
00174888 00174BD0
0017488C 00174CD8
00174890 00174DE0
00174894 00174EE8
00174898 00174FF0
0017489C 001750F8
001748A0 00175200
001748A4 00175308
001748A8 00175410
001748AC 00175518
001748B0 00175620
001748B4 00175728
001748B8 00175830
001748BC 00175938
001748C0 00175A40
001748C4 00175B48
001748C8 00175C50
001748CC 00175D58
The following is a memory dump of the out of bounds object:
00E82000 44 51 55 55 55 45 55 75 55 55 55 55 55 55 55 55
00E82010 55 55 55 55 55 55 55 54 55 55 55 55 01 00 00 00
00E82020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 50
00E82030 55 55 55 55 D5 55 55 55 57 55 55 55 55 55 55 55
00E82040 D5 5A 55 55 54 55 55 55 55 55 55 55 75 B5 56 55
00E82050 55 55 55 55 15 55 55 D5 55 55 AD 55 77 D5 55 55
00E82060 55 55 55 55 D5 D5 BA 56 55 55 55 55 55 55 6B 55
00E82070 B5 56 55 55 57 55 55 01 00 00 00 00 00 00 00 00
00E82080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00E82090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00E820A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00E820B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00E820C0 00 00 00 00 00 00 00 00 00 00
To make things more clear:
Let 'ArbitraryObjectA' be pointed by (&OutOfBoundsObject+0x8)
Let 'ArbitraryObjectB' be pointed by (&OutOfBoundsObject+0x38)
In order to reach the arbitrary overwrite, the are three conditions
1) intrf_count >= 0x10000000 // in order to overflow
2) PathConditionA: ((char *)ArbitraryObjectA)[0x2e] == 1 //
.text:10226D76
3) PathConditionB: ((char *)ArbitraryObjectB)[0x33c] == 0 //
.text:10226D7F
Given the conditions are passed, a memory DWORD overwrite of
arbitrary target and value occurs:
*(DWORD *)((*(DWORD *)(ArbitraryObjectA+0x1c))+0x20) = *(DWORD
*)(ArbitraryObjectA+0x20)
Exploitation:
=============
Since the out of bounds object contains arbitrary values, the attacker
may spray the heap
so he/she would have control over ArbitraryObjectA and
ArbitraryObjectB (they would
be located at addresses which contain data controlled by the
attacker). This may allow him/her
to pass all aforementioned conditions and also control the value which
is written
in the arbitrary memory MOV and the target of it. Achieving this may
allow him the execute arbitrary code.
During the research of this vulnerability I’ve managed to create a
functional exploit
(URL of the demo can be found in the references section of this advisory)
It should be denoted that the vulnerable code is wrapped by an SEH
handler which doesn't
crash the application on Access Violation. This means that the
exploitation process may
try different base addresses and offsets in case of a failure.
Attack vector:
==============
Lure the victim to open a malicious SWF file
Impact:
=======
Remote Code Execution
Test Environment:
=================
1. Adobe Flash Player 10.0.22.87
2. Windows XP SP3.
Remediation:
=========
New versions of Adobe Flash Player (10.0.32.18) and AIR (1.5.2) have
been released in order to address this vulnerability.
Identifiers:
============
1. CVE-ID: CVE-2009-1869
2. BID: 35907
Remarks:
============
I would like to thank Adobe for the efficient way in which they
handled this security issue.
References:
===========
1. My Blog (contains the original advisory): http://roeehay.blogspot.com/
2. Demo of the exploit: http://www.youtube.com/watch?v=wJb6a-J3i4c
3. Adobe’s advisory:
http://www.adobe.com/support/security/bulletins/apsb09-10.html